
A magazine of ACCU ISSN: 1354-3172

Using Senders/
Receivers

Lucian Radu Teodorescu demonstrates how
senders/receivers will be used in C++26 to

generate multithreaded code

Bit Fields, Byte Order and Serialization
Wu Yongwei explores issues to be aware of when
network packets are represented as bit fields

Valgrind’s Dynamic Heap Analysis
Tool: DHAT
Paul Floyd explains what this heap analysis
tool is and how to use it

Afterwood
Chris Oldwood tells us why he prefers
learning in person

by programmers, for programmers, about programming

��4 keynote speakers:
Anastasia Kazakova
Khalil Estell
Daisy Hollman
Matt Godbolt

��54 presentations

��3 lightning talk sessions

��Conference dinner

To find out more and to book,
 visit accuconference.org

accu
conference

2025

Pre- and post-conference workshops:

 1 x two-day online on 29th and 30th March 2025

 4 x one-day in person at the venue on 31st March 2025

 2 x one-day online on 12th April 2025

Tuesday 1st April
to

Friday 4th April

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

February 2025 | Overload | 1

ACCU
ACCU is an organisation of
programmers who care about
professionalism in programming. We
care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

Many of the articles in this magazine
have been written by ACCU members –
by programmers, for programmers – and
all have been contributed free of charge.

Copyrights and trademarks
Some articles and other contributions use terms that are either registered trade marks
or claimed as such. The use of such terms is not intended to support nor disparage any
trade mark claim. On request, we will withdraw all references to a specific trade mark
and its owner.

By default, the copyright of all material published by ACCU is the exclusive property
of the author. By submitting material to ACCU for publication, an author is, by default,
assumed to have granted ACCU the right to publish and republish that material in any
medium as they see fit. An author of an article or column (not a letter or a review of
software or a book) may explicitly offer single (first serial) publication rights and thereby
retain all other rights.

Except for licences granted to 1) corporate members to copy solely for internal
distribution 2) members to copy source code for use on their own computers, no material
can be copied from Overload without written permission from the copyright holder.

February 2025
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Paul Bennett
t21@angellane.org

Matthew Dodkins
matthew.dodkins@gmail.com

Paul Floyd
pjfloyd@wanadoo.fr

Jason Hearne-McGuiness
coder@hussar.me.uk

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Christian Meyenburg
contact@meyenburg.dev

Barry Nichols
barrydavidnichols@gmail.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Honey Sukesan
honey_speaks_cpp@yahoo.com

Jonathan Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Alison Peck –
in the greenhouse at Dyffryn
Gardens (a National Trust
property), Cardiff, Wales.

Copy deadlines
All articles intended for publication in Overload 186 should be submitted by
1st March 2025 and those for Overload 187 by 1st May 2025.

 4 Using Senders/Receivers
Lucian Radu Teodorescu demonstrates
how senders/receivers will be used in
C++26 to write multithreaded code.

 11 Bit Fields, Byte Order and Serialization
Wu Yongwei explores issues to be
aware of when network packets are
represented as bit fields.

 15 Valgrind’s Dynamic Heap Analysis Tool: DHAT
Paul Floyd explains what this heap analysis tool
is and how to use it.

 20 Afterwood
Chris Oldwood tells us why he
prefers learning in person.

FRAnCES BUOnTEmPOEDiTORiAl

2 | Overload | February 2025

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and
data mining. She’s written a book about machine learning: Genetic Algortithms and Machine Learning
for Programmers. She has been a programmer since the 90s, and learnt to program by reading the
manual for her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

All the information is on the Task
Instructions can be useful or infuriating, Frances Buontempo
wonders how to give and follow directions.

As the winter drags on, I have spent too much time
watching television so haven’t written an editorial.
In particular, Junior Taskmaster [IMDB] has been
on recently. Watching ‘live’ TV probably proves I’m
getting old, as well as wasting my life. Nonetheless,
if you’re not aware of it, let me explain. The original

Taskmaster [Wikipedia] is hosted by Alex Horne and Greg Davies. The
contestants, all celebrities and usually comedians, are set tasks. They are
awarded points and the contestant with the most points at the end wins.
The tasks are very silly, and often lateral thinking wins out. Frequently,
the contestants query the tasks, and are told, “All the information is on the
task.” Which almost never helps. Junior Taskmaster is hosted by Rose
Matefeo and Mike Wozniak and has children rather than celebrities as
contestants. The children’s insistence on fair play gives the new series
a different edge, but their imagination is amazing. One task involved
moving a sand castle from a podium labelled ‘A’ to a podium labelled
‘B’. I wondered if moving the podiums side by side might help, and a
child tried this. Two children were even more sensible, just peeling the
labels off and switching those. Lateral thinking often provides new and
sometimes simpler ways of solving a problem.

You have probably been tasked with something which seems almost
impossible or immensely tedious before. I started out as a maths teacher
after university and set a pupil lines once. Rather than writing out the
lines by hand they got a computer to generate a printout. Fine by me;
they had done as requested, and showed some initiative. Automating
can sometimes deal with the tedious, but the impossible is a different
challenge. I recall a couple of interviews where I needed to stall slightly
for thinking time. One involved live coding, which makes a change from
using a white board to reverse a linked list. However, I wasn’t 100% sure
how to approach the question, which involved spotting palindromes. Not
a difficult problem, but in an interview situation my brain tends to freeze
up and I wasn’t sure what I was allowed to use. I started, as I often do,
by writing a test. Using assert. For an empty string, with a function
that only returned false. The interviewer was deeply unimpressed,
and pointed out my code didn’t work, and all the information was in
the question. Explaining I often started like that when using TDD didn’t
seem to help. The interviewer simply looked bemused. I managed the
required function in the end. Starting with a very simple case helped me
start thinking straight, though someone not getting writing a failing test
first was off putting. Another interview question involved a brain teaser. I
don’t recall the precise details, but it involved putting pennies on a table

and the person who put the last coin down either
won or lost. Coins weren’t allowed to overlap,

and I think you had to say if you would go first
or second. I had no idea how to start thinking
it through, so asked probing questions about

the size of coins and table. If a coin is as big as a table, you can only put
one down. I suspect the interviewer wasn’t impressed by me starting with
edge cases, trying to flush out the specific details. But you need to start
thinking somewhere.

Have you ever picked up a task from a tracking system, like Jira, and got
stuck immediately? In theory, if you have backlog grooming/refinement
sessions, everyone on the team should be able to understand what a task
requires. And yet, it is still possible to get to some work and find things
have changed, or assumptions no longer hold. Seb Rose wrote about this
in his ‘User Stories and BDD’ series. In ‘Part 2, Discovery’ [Rose23].
He said:

As professionals, we are paid to have answers. We feel deeply
uncomfortable with uncertainty and will do almost anything to avoid
having to admit to any level of ignorance.

Finding the uncertainty can be useful though. He goes on to talk about
deliberate discovery and how to spot questions and unclear parts as well
as splitting stories into manageable chunks. If a task or Jira has some
example cases, or even if you have actual BDD automation tests to start
coding against, you are much less likely to find yourself staring at the task
wondering where to begin. In this case, all, or at least enough, information
will be on the task. An example is often clearer than a Jira.

I heard a talk recently by a business person about how they wrote Jiras.
Their team had a template with several sections, like acceptance criteria
and so on, but they frequently forgot sections. Their solution was to use
GenAI to write the tickets. The thought of this instantly horrified me. If
the team subsequently talked through the Jiras I could see it working,
but again having a list of what’s required doesn’t always mean the
tasks make sense. Have you ever given someone instructions and they
somehow miss the point completely? No matter how clear and precise
you try to be, there is always room for misunderstanding. I recall a tale
of a child making his Mum a cup of tea. Said child knew he had to boil
the kettle, but thought it would be more efficient to put a teabag in the
kettle while it boiled. A cup of ‘tea’ was made, but probably wasn’t very
tea flavoured. Spelling out the precise steps, in order, might avoid such
creative thinking, but is very hard to do. There’s usually a balance point.
If a recipe says “Make a pastry case” but you don’t know how to make
pastry that won’t be much help. Whereas, if the recipe spells out what a
gram or milliliter are, that will distract from the baking instructions. An
imperative set of instructions will make assumptions about a common
understanding of words and instructions. “Boil a kettle” does not mean
heating a kettle until it reaches boiling point. “Run the tests” should mean
checking they pass, and taking appropriate action for any failures. Trying
to communicate how to achieve something is hard, and often requires
some back and forth.

FRAnCES BUOnTEmPO EDiTORiAl

February 2025 | Overload | 3

The back and forth conversation necessitates people being able to
communicate. Sometimes that is not possible. For example, if you write
documentation, the chances are you will never meet are many people who
read your instructions. You can get a friend or colleague to read through
your first drafts. You might also be able to read through yourself, trying
to misunderstand everything you have written, searching for potential
misunderstandings or confusion. You might find you can write a script or
automate some of the steps. Sometimes explaining to a computer is easier
than explaining to a human.

Documentation crops up in various places. Maybe for a new machine or
perhaps a game. Lots of machines no longer come with documentation, in
particular mobile phones or laptops. Last time I bought a laptop, I had to
search the internet to find out where the on button was. Nonetheless, you
do still get written instructions, for example for games. And sometimes
they are incomprehensible, so you need to attempt to play and decide
amongst yourselves what to do under various circumstances. Some
games don’t come with full instructions. You might find a settings menu
telling you key bindings like ‘W’, ‘A’, ‘S’, ‘D’ for up, left, down, right
respectively. Figuring out what the rules are and how to score after that
is another matter. I’m currently trying to prepare a talk for the ACCU
conference [Buontempo25] about reinforcement learning (RL). RL is a
type of machine learning where agents take actions in an environment,
using trial and error to ‘learn’. Rewards or penalties reinforce actions, and
agents try to maximize rewards over time. For example, playing an arcade
game and trying to get a high score. You can tell the agent the possible
moves, WASD, and track the environment, letting the agent learn how
to play the game. Deep Mind produced a paper showing how to train an
agent using the pixels on screen to describe the environment [Mnih13].
Plug the agent and environment into an RL framework and watch your
machine learn to play PacMan or similar over time [Gymnsasium (for
example)]. Or wait for me to find a simple way to explain how to code
the reinforcement learning up from scratch. Deep Mind’s reinforcement
learning, called Deep Q-Learning, did not need all the information
upfront. The algorithm discovered how to play to get a good score by
experimentation.

Writing code is often an iterative process, at least in terms of discovering
the requirements. The code itself may be more declarative than iterative,
or might even be recursive. I dip into functional languages from time to
time, and can feel my brain starting to hurt/expand/change viewpoints
while I get re-familiarised with recursive approaches. For example, you
may see code for a sort along the lines of
 merge_sort(A, start, end):
 if start<end
 mid = (start+end)/2
 merge_sort(A, start, mid)
 merge_sort(A, mid+1, end)
 merge(A, start, mid, end)

The merge function is left as an exercise for the reader. If you are
familiar with merge sort, you will recognize this pseudocode. However,
do you remember the first time you encountered code like this? How do
you even start thinking this through? We’ve probably all seen jokes like
the dictionary definition of recursion saying “see recursion”. How do
you start? All the information may be in the pseudocode, but you might
need to rewire your brain slightly to understand. All the information is
in the code, but that doesn’t always help. And sometimes, some of the
information is in a config file. Or more than one config file. Or replaced
upfront by a setting in a database. So, we have two extremes: first a short
piece of code in one place (apart from the merge function, sorry!) and
another codebase with parts scattered in various places. Both can be
hard to understand but for very different reasons. Figuring out how to
understand a new codebase is a topic in itself. If you want some ProTips,
watch Jonathan Boccara’s ACCU 2019 conference talk, ‘10 Techniques
to Understand Code You Don’t Know’ [Boccara19]. He talks about
exploring, reading and understanding code. The exploring ideas start by

finding where and how to experiment with input and outputs, whether a
UI framework or log files or unit tests. We tend to learn by experimenting
and discovering. Just staring at the merge-sort might not be enough to
figure out what’s going on. Finding a way to play with the code is more
helpful. Or even, trying to sort some playing cards by following the
instructions in the code can be useful.

Now, following instructions without thinking might prove that a set
of instructions fulfill the requirements. That doesn’t mean you have
understood why the recipe works. I spent some time last year trying
to solve the Rubik’s cube. A friend set up a discussion group, sending
videos and instructions to help. I did finally manage to solve the cube,
but I would have to follow instructions to do this a second time. I know
full well I don’t fully understand why certain sequences of moves work,
and I often have the orientation incorrect and end up moving the wrong
pieces. Hopefully, I will eventually form a mental model, allowing me
to think through what I need to do. Next time someone tells you “All the
information is on the task” or tells you to “Read the question” in an exam,
feel free to experiment and find out what happens. That’s how we learn.
You might discover something, or come out with a clever solution, you
never know. In fact, here’s a challenge. An Overload editorial requires
two pages of writing for the front of the magazine. An editorial should be
an opinion piece, or relevant to something topical, which as you know I
never manage. If you want to try your hand, please get
in touch. Task: 2,000 words or so, on a topic of your
choice. Send it to me, and we’ll see what the review
team thinks. Over to you.

References
[Boccara19] Jonathan Boccara, ‘10 Techniques to Understand Code You

Don’t Know’, ACCU 2019, available at https://www.youtube.com/
watch?v=tOOK-VsWU-I

[Buontempo25] Frances Buontempo ‘An introduction to reinforcement
learning: Snake your way out of a paper bag’, talk to be delivered at
ACCU 2025, abstract available at: https://accuconference.org/2025/
session/an-introduction-to-reinforcement-learning-snake-your-way-
out-of-a-paper-bag

[IMDB] Junior Taskmaster: https://www.imdb.com/title/tt34234603/
[Gymnasium] https://gymnasium.farama.org/
[Mnih13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex

Graves, Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller,
‘Playing Atari with Deep Reinforcement Learning’ NIPS Deep
Learning Workshop 2013

[Rose23] Seb Rose, ‘Part 2, Discovery’ in Overload 31(178):4-
5, December 2023 https://accu.org/journals/overload/31/178/
overload178.pdf#page=6 and https://accu.org/journals/
overload/31/178/rose/

[Wikipedia] Taskmaster: https://en.wikipedia.org/wiki/Taskmaster_(TV_
series)

https://www.youtube.com/watch?v=tOOK-VsWU-I
https://www.youtube.com/watch?v=tOOK-VsWU-I
https://accuconference.org/2025/session/an-introduction-to-reinforcement-learning-snake-your-way-out-of-a-paper-bag
https://accuconference.org/2025/session/an-introduction-to-reinforcement-learning-snake-your-way-out-of-a-paper-bag
https://accuconference.org/2025/session/an-introduction-to-reinforcement-learning-snake-your-way-out-of-a-paper-bag
https://www.imdb.com/title/tt34234603/
https://gymnasium.farama.org/
https://accu.org/journals/overload/31/178/overload178.pdf#page=6
https://accu.org/journals/overload/31/178/overload178.pdf#page=6
https://accu.org/journals/overload/31/178/rose/
https://accu.org/journals/overload/31/178/rose/
https://en.wikipedia.org/wiki/Taskmaster_(TV_series)
https://en.wikipedia.org/wiki/Taskmaster_(TV_series)

lUCiAn RADU TEODORESCUFEATURE

4 | Overload | February 2025

Using Senders/Receivers
C++26 will introduce senders/receivers.
Lucian Radu Teodorescu demonstrates how
to use them to write multithreaded code.

This is a follow-up to the article in the previous issue of Overload,
which introduced the upcoming C++26 senders/receivers framework
[WG21Exec]. While the previous article focused on presenting

the main concepts and outlining what will be standardized, this article
demonstrates how to use the framework to build concurrent applications.

The goal is to showcase examples that are closer to real-world software
rather than minimal examples. We address three problems that can
benefit from multi-threaded execution: computing the Mandelbrot fractal,
performing a concurrent sort, and applying a graphical transformation to
a set of images.

All the code examples are available on GitHub [ExamplesCode]. We use
stdexec [stdexec], the reference implementation for the senders/receivers
proposal. Additionally, some features included in the examples are not yet
accepted by the standard committee, though we hope they will be soon.

Before we get started
Before diving into more realistic examples, let’s begin with a minimal
example to set the stage. The code in Listing 1 prints “Hello, concurrency!”
from a thread that is different from the main thread.

The code is roughly equivalent to:
 std::thread{[]
 { printf("Hello, concurrency!\n"); }}.join();

Here, we acquire a thread from the system scheduler and execute the
given lambda on that thread, which prints the message to the standard
output.

The scheduler acts as a handle to an execution context – an entity that
owns threads of execution, such as CPU or GPU threads. The system
scheduler represents the default execution context on the current system,
presumably shared among all applications running on the system. A good
way to conceptualize it is as a thread pool, with an unspecified number of
threads, shared across the applications currently running.

The work to be done is described by the sender snd. As mentioned in
the previous article [Teodorescu24], senders merely describe work
– they do not represent the actual execution of that work. To execute
the work, the sender must be started. Senders are somewhat similar to
std::function objects: they represent function-like work, but defining
such an object does not immediately execute it; the function object must
be invoked to start the work. In our case, the operation that starts the work
is sync_wait. This function initiates the work described by the sender
and blocks until the result is produced. It then returns the result of the
work, although in our example, we ignore the result.

As shown in the example, the stdexec library provides two namespaces:
stdexec and exec. Similarly, the include files are organized into folders

named stdexec and exec. Everything under the stdexec namespace is
part of the P2300 proposal [P2300R10], which has already been accepted
into the C++26 draft. Entities within the exec namespace are not part of
the original P2300 proposal but are either candidates for standardization
or provide useful abstractions. In our case, system_context and
get_system_scheduler are proposed for standardization [P2079R5].

Work graph
In a serial program, all instructions are executed sequentially, and the order
of execution is typically straightforward. For these programs, especially
when following structured programming principles, understanding the
scopes of different objects and code structures is crucial.

In contrast, for concurrent programs, both the ordering of instructions and
the scopes of entities become important. In concurrent execution, there
is a partial ordering of work items, forming a graph that represents the
dependencies and execution flow of these items.

When examining this graph of work items, well-structured concurrency
often results in the scope of an operation aligning with the span during
which the operation can be executed – specifically, from the completion
of all predecessors to the initiation of any successors.

Thinking of work as a graph is a quick and effective way to understand
the constraints of a problem. For this reason, we will briefly discuss this
graph of execution in the context of our examples.

Computing the mandelbrot set
The Mandelbrot set is a two-dimensional fractal of great complexity,
generated by the convergence of the simple formula: f z z cc () � �2 .
Figure 1 (next page) illustrates the image of a Mandelbrot fractal, centered
at c � �1 4011. (with no imaginary component), using a scale of 512 and
an iteration limit (depth) of 1000. Each iteration count is represented by
a different color.

The code to compute this fractal without using concurrency is similar to
the code shown in Listing 2.

We use a matrix of dimensions max_x by max_y, where each element
represents a depth value that will be mapped to a color to create a colorful
image. The transform functor passed to serial_mandelbrot converts

Lucian Radu Teodorescu has a PhD in programming languages
and is a Staff Engineer at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro

#include <exec/system_context.hpp>
#include <stdexec/execution.hpp>

int main() {
 stdexec::scheduler auto sched =
 exec::get_system_scheduler();
 stdexec::sender auto snd =
 stdexec::schedule(sched)
 | stdexec::then([]
 { printf("Hello, concurrency!\n"); });
 stdexec::sync_wait(std::move(snd));
}

listing 1

lUCiAn RADU TEODORESCU FEATURE

February 2025 | Overload | 5

a position in the matrix (a pixel) into a complex value. One possible
implementation for this is the pixel_to_complex function. The core
of the algorithm resides in the mandelbrot_core function, which
computes the depth (up to a specified limit) for a given initial complex
number c. This function is called for each element in the matrix, iterating
up to depth times for each.

The overall complexity of the algorithm is O(max_y * max_x * depth). It is
worth noting that, for some pixels, the mandelbrot_core function will
terminate after only a few iterations, resulting in unbalanced computation
across matrix elements. Despite this, on common hardware, filling a
screen with the Mandelbrot fractal at a depth of 1000 is not particularly
fast. Adding concurrency to the computation could provide significant
performance benefits.

Listing 3 demonstrates the changes required to modify the main
function to execute the program on multiple threads. The primary
change involves transforming the outer loop (which iterates over the
y axis) into a bulk() call. The bulk() sender executes the given
body max_y times on the current execution context. This execution
context is provided by the scheduler, which, as before, is obtained using
get_system_scheduler(). Consequently, different lines in the
matrix may be computed by different threads.

If the machine running this program has 8 cores, it is reasonable to assume
that the system’s execution context will provide 8 OS threads to perform
the work. However, creating more threads than the number of hardware

threads available on the system can lead to CPU oversubscription
[Wikipedia], which will degrade the application’s performance.

The work itself is described by a sender, snd. To execute the work, the
program invokes sync_wait(), which blocks until all the work is
completed.

There is an important caveat in this example that is worth highlighting. By
simply reading the code in Listing 3, one might assume that the definition
of the bulk() algorithm inherently specifies the conditions under which

int mandelbrot_core(std::complex<double> c,
 int depth) {
 int count = 0;
 std::complex<double> z = 0;
 for (int i = 0; i < depth; i++) {
 if (abs(z) >= 2.0)
 break;
 z = z * z + c;
 count++;
 }
 return count;
}

std::complex<double> pixel_to_complex(int x,
 int y) {
 double x0 = offset_x +
 (x - max_x / 2) * 4.0 / max_x / scale;
 double y0 = offset_y +
 (y - max_y / 2) * 4.0 / max_y / scale;
 return std::complex<double>(x0, y0);
}

template <typename F>
void serial_mandelbrot(int* vals, int max_x,
 int max_y, int depth, F&& transform) {
 for (int y = 0; y < max_y; y++) {
 for (int x = 0; x < max_x; x++) {
 vals[y * max_x + x] =
 mandelbrot_core(transform(x, y), depth);
 }
 }
}

listing 2

Figure 1

template <typename F>
void mandelbrot_concurrent(int* vals, int max_x,
 int max_y, int depth, F&& transform) {
 auto sched = exec::get_system_scheduler();
 auto snd = stdexec::schedule(sched)
 | stdexec::bulk(max_y, [=](int y) {
 for (int x = 0; x < max_x; x++) {
 vals[y * max_x + x] =
 mandelbrot_core(transform(x, y),
 depth);
 }
 });
 stdexec::sync_wait(std::move(snd));
}

listing 3

creating more threads than the number of
hardware threads available on the system

can lead to CPU oversubscription, which will
degrade the application’s performance

lUCiAn RADU TEODORESCUFEATURE

6 | Overload | February 2025

computations can be executed concurrently. However, this is not entirely
accurate. By default, the bulk() algorithm functions as a glorified for
loop without any built-in concurrency.

Concurrency is introduced through specialization. Algorithms like
bulk() can be specialized based on the scheduler they execute on. In
this case, the system scheduler provides a specialization for bulk()
that leverages the execution context it manages. It is the combination of
the system scheduler and the bulk() algorithm that enables the desired
multi-threaded implementation. If the system scheduler were removed
from the code, the computation would run sequentially.

The graph for this problem, shown in Figure 2, illustrates the dependencies
between tasks. From a concurrency perspective, this problem is relatively
straightforward, as the graph is not complex.

In conclusion, transforming single-threaded code into multi-threaded
code using the senders/receivers framework does not need to be difficult.

Concurrent sort
In the previous example, achieving multi-threaded execution involved
transforming a for loop into a bulk() call. Given a known number of
iterations, bulk() effectively executes the work concurrently, adhering
to the rules defined by the current scheduler. But what happens when the
work to be done is not linear, and the number of iterations is unknown
upfront? This section provides an example to address this scenario.

Here, we focus on adapting a classic implementation of quick sort to run
concurrently. The serial version of the algorithm is shown in Listing 41.
For small collections, we use std::sort as the base case for recursion.
For larger collections, the algorithm partitions the elements into three
groups based on a pivot: elements smaller than the pivot, elements equal
to the pivot, and elements larger than the pivot. The pivot is chosen
to maximize the likelihood of balanced partitions. Once the data is
partitioned, we recursively sort the smaller and larger partitions.

1 This may not be the most optimal version of sorting; the serial method
presented here is a simplification of the concurrent version.

Listing 5 illustrates how this algorithm can be implemented using
senders/receivers to achieve concurrent execution. This example
utilizes an async_scope2 object to manage dynamic concurrent work,
necessitating the wrapping of the recursive function. The async_scope
provides a dynamic scope for the concurrent tasks it spawns. The core
logic of the sorting function remains largely unchanged; the primary
modification is that the sorting of the right-side subrange is now offloaded
to the system scheduler, allowing it to run concurrently with the sorting
of the left-side subrange.

The code used to spawn work appears more complex because it includes
handling errors of type std::error_code. The system scheduler is
currently undergoing standardization, and the stdexec implementation
is continuously evolving to align with this process. At the time of writing,
scheduling work on the system context may produce an error of type
std::error_code. However, async_scope does not natively handle
such errors – it only manages exceptions. To bridge this gap, we need to
convert the std::error_code into an exception, which we accomplish
using the upon_error() algorithm.

Ideally, the result of the lambda passed to upon_error() is sent
through the value channel (see the previous article in this series
[Teodorescu24]). The value channel for the schedule() algorithm is
set_value(void). Since we do not want to introduce an additional
value channel, the lambda passed to upon_error() must return void.
Even if the lambda body is empty, it is not declared as noexcept.
Consequently, upon_error() assumes that the lambda might throw,
ensuring the inclusion of a set_error(std::exception_ptr)
error channel in its response. This mechanism enables the conversion

2 The name proposed for standardization is counting_scope; however,
we use async_scope here as this is the name currently used by the
stdexec library. See [P3149R6].

template <std::random_access_iterator It>
void concurrent_sort_impl(It first, It last,
 exec::async_scope& scope) {
 auto size = std::distance(first, last);
 if (size_t(size) < size_threshold) {
 // Use serial sort under a certain threshold.
 std::sort(first, last);
 } else {
 // Partition the data, such as elements
 // [0, mid1) < [mid1, mid2) <= [mid2, n).
 // Elements in [mid1, mid2) are equal to the
 // pivot.
 auto p = sort_partition(first, last);
 auto mid1 = p.first;
 auto mid2 = p.second;

 // Spawn work to sort the right-hand side.
 stdexec::sender auto snd
 = stdexec::schedule
 (exec::get_system_scheduler())
 | stdexec::upon_error([]
 (std::error_code ec) -> void {
 throw std::runtime_error
 ("cannot start work");
 })
 | stdexec::then([=, &scope] {
 concurrent_sort_impl(mid2, last,
 scope);
 })
 ;
 scope.spawn(std::move(snd));
 // Execute the sorting on the left side,
 // on the current thread.
 concurrent_sort_impl(first, mid1, scope);
 }
}
template <std::random_access_iterator It>
void concurrent_sort(It first, It last) {
 exec::async_scope scope;
 concurrent_sort_impl(first, last, scope);
 stdexec::sync_wait(scope.on_empty());
}

listing 5

template <std::random_access_iterator It>
void serial_sort(It first, It last) {
 auto size = std::distance(first, last);
 if (size_t(size) < size_threshold) {
 // Use serial sort under a certain threshold.
 std::sort(first, last);
 } else {
 // Partition the data, such as elements
 // [0, mid1) < [mid1, mid2) <= [mid2, n).
 // Elements in [mid1, mid2) are equal to
 // the pivot.
 auto p = sort_partition(first, last);
 auto mid1 = p.first;
 auto mid2 = p.second;

 serial_sort(first, mid1);
 serial_sort(mid2, last);
 }
}

listing 4

Figure 2

Lucian Radu TeodoRescu FeaTuRe

February 2025 | overload | 7

of the set_error(std::error_code) channel into a
set_error(std::exception_ptr) channel. Later in this article,
we will demonstrate another method for modifying the error channels
of a sender.

Even if the std::error_code error channel is not ultimately
standardized (and stdexec removes support for it), this exercise
provides valuable insights into handling error channels effectively.

Now, let’s dive into the most interesting aspect of this example: the
concept of work span. In the previous examples, the span of spawned
work was always contained within the span of the enclosing function,
meaning the work spans were fully nested. This approach is known as
structured concurrency. However, in the example from Listing 5, the
span of the spawned work can extend beyond the end of the enclosing
function. In this case, the scopes do not fully nest; we call this weakly-
structured concurrency.

One of the key purposes of async_scope is to impose a weak
structure on work that might otherwise lack structure. The structure
imposed here ensures that all work must be completed before the call
to stdexec::sync_wait(scope.on_empty()). This statement
blocks the current thread until all work within the scope is finished (i.e.,
the scope is empty).

You can think of async_scope as a sophisticated shared counter. Each
time work is spawned on the scope, the counter increments. When the
work is completed, the counter decrements. The on_empty() method
returns a sender that completes when the counter reaches zero, signifying
that there is no outstanding work.

Whenever we introduce weakly-structured constructs, we must carefully
double-check the safety of the approach. Specifically, we need to ensure
that the spawned work does not access anything from the stack of the
function that might be deallocated before the work is completed. In this
case, the spawned work only accesses a section of the input sequence, and
no other work item accesses the same section simultaneously.

The concurrent sort algorithm performs partitioning in a non-parallelizable
manner. However, it then continues dividing the work in half, adding tasks
to process the partitions concurrently. This causes the number of worker
threads to gradually increase until all threads in the system scheduler are
fully utilized for sorting tasks.

The concurrent structure of the problem is illustrated in Figure 3. It
highlights the recursive nature of the problem and the way tasks are
divided and executed concurrently.

In this example, we demonstrated how to use weakly-structured
concurrency and discussed some of the challenges associated with
managing error channels.

Processing images
Let’s now tackle a more complex problem, one that introduces additional
challenges and interesting discussions. We will build an application that
reads all JPEG images from a folder, applies a filter to each image, and
saves the processed images to a different folder. Since processing an image
can be time-consuming and there may be multiple images to handle, the
application could benefit significantly from leveraging multiple threads.

An outline of the program, including function declarations and the
main() function body, is shown in Listing 6. The program uses OpenCV
[OpenCV] for image processing. All functions returning cv::Mat
are standard functions that process images and return new ones. The
read_file and write_file functions perform file reading and writing,
as expected. Our focus will be on three key functions: tr_cartoonify,
error_to_exception, and process_files.

Figure 4 (next page) illustrates the execution graph for this problem,
assuming there are three files to process. The graph resembles a pipeline,
where the first and last stages (read_file and write_file) are I/O
operations, and the intermediate stages consist of operations that can
benefit from concurrent execution across multiple threads.

adding concurrency to a small pipeline
The ‘cartoonify’ operation involves applying a mask to an image with
reduced colors, where the mask consists of the edges of the original
picture. To produce the final result, we need two intermediate images:
one with reduced colors and one showing the edges. The reduced-
color image is obtained by calling tr_reduce_colors, while the
edges image is computed through a sequence of operations: tr_blur,
tr_to_grayscale, and tr_adaptthresh. Since these operations
can be computationally expensive and the two processing streams are
independent, it makes sense to execute them concurrently. The code for
this is shown in Listing 7 (next page).

To enable concurrency, we again rely on the system scheduler. The two
concurrent chains of computation are represented by the two parameters
passed to when_all(). Each computation begins with a call to
transfer_just(), which transfers execution to a thread managed by
the system scheduler while passing the source image as an argument. As

Figure 3

cv::Mat tr_apply_mask(const cv::Mat& img_main,
 const cv::Mat& img_mask);
cv::Mat tr_blur(const cv::Mat& src, int size);
cv::Mat tr_to_grayscale(const cv::Mat& src);
cv::Mat tr_adaptthresh(const cv::Mat& img,
 int block_size, int diff);
cv::Mat tr_reducecolors(const cv::Mat& img,
 int num_colors)
cv::Mat tr_oilpainting(const cv::Mat& img,
 int size, int dyn_ratio);
auto tr_cartoonify(const cv::Mat& src,
 int blur_size, int num_colors, int block_size,
 int diff);

auto error_to_exception();

std::vector<std::byte>
 read_file(const fs::directory_entry& file);
void write_file(const char* filename,
 const std::vector<unsigned char>& data);

exec::task<int>
 process_files(const char* in_folder_name,
 const char* out_folder_name, int blur_size,
 int num_colors, int block_size, int diff);

int main() {
 auto everything = process_files("data", "out",
 blur_size, num_colors, block_size, diff);
 auto [processed] = stdexec::sync_wait
 (std::move(everything)).value();
 printf("Processed images: %d\n", processed);
 return 0;
}

Listing 6

lUCiAn RADU TEODORESCUFEATURE

8 | Overload | February 2025

before, the issue of the std::error_code error channel arises, and this
time we address it by chaining the error_to_exception() sender
adaptor. The primary work for each computation chain is encapsulated
in lambdas passed to the then() algorithm, clearly showing the steps
needed to produce the two intermediate images.

The when_all() algorithm combines the two computations, creating
a sender that completes only when both branches have finished. Upon
completion, it triggers a value completion, passing the two resulting
images. On top of when_all(), we use the then() algorithm again to
combine the two images into a single output image. The result is a sender
that completes with the final image as a value. Additionally, it can signal
completion with an exception-encoded error or a stopped signal.

The tr_cartoonify() function simply returns this resulting sender.
The sender’s type is complex and not easily nameable, as it encapsulates
type information from all the senders and lambdas involved in the
function.

Although this image processing function introduces limited concurrency
(less than a 2× improvement), it still provides a notable performance
boost compared to the serial version.

Consolidating error completion signals
Let’s now focus on the error_to_exception() function, shown
in Listing 8. This function achieves essentially the same goal as the
upon_error() approach from the previous section, but in a slightly
more general manner. The limitations of upon_error() make it less

practical for some scenarios. Specifically, upon_error() cannot handle
multiple error completion signals from the previous sender, and it must
return the correct value type to integrate seamlessly into the pipeline.

Our approach in this case converts any error type into an exception.
Each time an error is sent by the previous sender, the lambda
passed to let_error() is invoked. If the previous sender
supports both the set_error(std::exception_ptr) and
the set_error(std::error_code) completion signatures,
the lambda must handle both an std::exception_ptr and an
std::error_code as arguments. To accommodate this, we use a
generic auto parameter for the lambda.

In the body of the lambda, we differentiate between two cases: if the
argument is an exception pointer, we simply forward it; otherwise, we
create a new exception and forward that.

In both cases, the lambda returns a sender that produces an error. It is
crucial that the return types of the two cases are the same; otherwise, the
code would result in a compilation error.

While this process may seem cumbersome to users unfamiliar with such
completion signal manipulations, it is likely that users will adapt quickly
to these patterns with practice.

The main transformation
Listing 9 (next page) shows the main body of the process_files()
function, which represents the core process of the program. Setting aside
the fact that this is a coroutine, as well as the initialization of the two
schedulers and the async_scope object at the start of the function,
the body itself is relatively straightforward. It iterates over all the JPEG
images in the source folder and processes each one. The processing is
divided into two parts: reading the file’s content and processing the image.

The file-reading step simply involves a call to the read_file() function,
executed within the context of the io_sched scheduler object. The
reason for using this scheduler will be explained in the next section. This
step also involves a co_await operation, which will be discussed later.

The main transformation is shown in Listing 10 (also next page). Here,
the content of the input file is transferred to the cpu_sched scheduler
(which is the system scheduler), where most of the processing takes place.
As in previous examples, we consolidate the error channel by including
error_to_exception() in the pipeline. Once this is done, the image
is decoded on a CPU thread using cv::imdecode().

auto tr_cartoonify(const cv::Mat& src,
 int blur_size, int num_colors,
 int block_size, int diff) {
 auto sched = exec::get_system_scheduler();
 stdexec::sender auto snd =
 stdexec::when_all(
 stdexec::transfer_just(sched, src)
 | error_to_exception()
 | stdexec::then([=](const cv::Mat& src) {
 auto blurred = tr_blur(src,
 blur_size);
 auto gray = tr_to_grayscale(blurred);
 return tr_adaptthresh(gray,
 block_size, diff);
 }),
 stdexec::transfer_just(sched, src)
 | error_to_exception()
 | stdexec::then([=](const cv::Mat& src) {
 return tr_reducecolors(src,
 num_colors);
 })
)
 | stdexec::then([](const cv::Mat& edges,
 const cv::Mat& reduced_colors) {
 return tr_apply_mask(reduced_colors,
 edges);
 });
 return snd;
}

listing 7

Figure 4

auto error_to_exception() {
 return stdexec::let_error([](auto e) {
 if constexpr (std::same_as<decltype((e)),
 std::exception_ptr>)
 return stdexec::just_error(e);
 else
 return stdexec::just_error
 (std::make_exception_ptr
 (std::runtime_error("other error")));
 });
}

listing 8

lUCiAn RADU TEODORESCU FEATURE

February 2025 | Overload | 9

Once we retrieve the image, we apply the tr_cartoonify()
transformation. However, instead of using the typical then() algorithm,
we use let_value(). The then() algorithm is appropriate when the
given functor returns a value, whereas let_value() is used when the
functor returns a sender. Since tr_cartoonify() returns a sender,
let_value() is required. The let_value() algorithm is highly
versatile and serves as the monadic bind operation for senders.

After completing the transformation, we encode the image back into
a stream of JPEG bytes using the cv::imencode() function. This
operation is performed on a CPU thread, as it is typically CPU-intensive.
Next, we write the resulting byte stream to disk. Since this is an I/O
operation, we transition to the scheduler dedicated to I/O tasks. Once the
file writing is complete, we print a message to standard output (still on the
I/O thread) and increment the counter for successfully processed images.

Undersubscription and oversubscription
On some modern computers, I/O operations may be fast and predominantly
consume CPU resources. However, let’s assume that this is not the case.
Specifically, let’s assume that both reading and writing image files are
slow operations that do not heavily utilize CPU cycles. For the sake of
discussion, we will assume that I/O accounts for 25% of the program’s
total runtime3.

If we were to add concurrency to the program without considering this,
the CPU cores would spend significant time processing images only to go
idle for approximately 25% of the time, waiting on I/O operations. This
inefficiency could worsen if I/O operations on one thread interfere with
I/O on another thread, leading to greater performance degradation as the
level of concurrency increases.

A common solution to this problem is to create a pipeline where all
I/O operations are handled on a single thread, while CPU-intensive
operations are distributed across a thread pool sized to match the number
of physical cores on the machine. To implement this, we use a scheduler
obtained from a static_thread_pool (note that this is not proposed
for standardization) dedicated to I/O tasks. This scheduler is distinct from

3 These assumptions are made to illustrate the thread-switching
technique described. In practice, this approach may not always be
worthwhile. Readers should measure performance before making
similar assumptions.

the system scheduler, which is designed to match the available hardware
resources.

If the target hardware has N physical cores, one might wonder why
not use a thread pool with N + 1 threads. The reason lies in the risk of
oversubscription: running more CPU-intensive tasks simultaneously on a
system with less physical cores can lead to decreased performance due to
excessive task switching.

A common misconception is that running two tasks, each requiring one
second to complete, simultaneously on one core will somehow finish in
one second. In reality, running them concurrently on the same core often
takes longer than two seconds due to the overhead of context switching.
Running such tasks sequentially is typically more efficient. I explored this
concept in my ACCU 2023 talk [Teodorescu23]. To illustrate, imagine
trying to read two books at the same time or a physician performing
complex surgery while attending a hospital board meeting over the
phone. Running two tasks on the same physical core involves frequent
context switches, which are inherently expensive.

For optimal performance, the goal is to achieve near 100% CPU utilization
across all cores for the entire program duration. If CPU utilization falls
below 100%, we encounter undersubscription, where some cores remain
idle despite work being available. Conversely, if workload exceeds 100%
CPU utilization, excessive task switching occurs, and the processor
spends valuable time managing context switches instead of executing
critical tasks.

To address this, it is common practice to offload all I/O operations from
CPU-intensive work and execute them on a dedicated execution engine.

Coroutines and senders
This example highlights another intriguing aspect of the senders/receivers
framework: its interaction with coroutines. With minimal annotations to a
coroutine type, coroutines can effectively behave as senders. This allows
us to co_await a sender or use a coroutine object in place of a sender.

The stdexec library provides such a coroutine type, exec::task,
which we use in our example for the process_files() coroutine.
Within the coroutine, we co_await the result of reading the input file
on the I/O execution context and also co_await the completion of all
activities using scope.on_empty(). On the other end, in the main()

stdexec::sender auto work =
 stdexec::transfer_just(cpu_sched,
 cv::_InputArray::rawIn(file_content))
 | error_to_exception()
 | stdexec::then([=](cv::InputArray
 file_content) -> cv::Mat {
 return cv::imdecode(file_content,
 cv::IMREAD_COLOR);
 })
 | stdexec::let_value([=](const cv::Mat& img) {
 return tr_cartoonify(img,
 blur_size, num_colors, block_size, diff);
 })
 | stdexec::then([=](const cv::Mat& img) {
 std::vector<unsigned char>
 out_image_content;
 if (!cv::imencode(extension, img,
 out_image_content)) {
 throw std::runtime_error
 ("cannot encode image");
 }
 return out_image_content;
 })
 | stdexec::continues_on(io_sched)
 | stdexec::then([=]
 (const std::vector<unsigned char>& bytes) {
 write_file(out_filename.c_str(), bytes);
 })
 | stdexec::then([=] { printf("Written %s\n",
 out_filename.c_str()); })
 | stdexec::then([&] { processed++; });

listing 10

exec::task<int> process_files(const char*
 in_folder_name, const char* out_folder_name,
 int blur_size, int num_colors,
 int block_size, int diff) {
 exec::async_scope scope;
 exec::static_thread_pool io_pool(1);
 auto io_sched = io_pool.get_scheduler();
 auto cpu_sched = exec::get_system_scheduler();

 int processed = 0;
 for (const auto& entry
 : fs::directory_iterator(in_folder_name)) {
 auto extension = entry.path().extension();
 if (!entry.is_regular_file() || (extension
 != ".jpg") && (extension != ".jpeg"))
 continue;
 auto in_filename = entry.path().string();
 auto out_filename =
 (fs::path(out_folder_name) /
 entry.path().filename()).string();
 printf(“Processing %s\n”,
 in_filename.c_str());
 auto file_content =
 co_await (stdexec::schedule(io_sched)
 | stdexec::then([=]
 { return read_file(entry); }));
 stdexec::sender auto work = ...
 scope.spawn(std::move(work));
 }
 co_await scope.on_empty();
 co_return processed;
}

listing 9

lUCiAn RADU TEODORESCUFEATURE

10 | Overload | February 2025

function, we pass the coroutine object to the sync_wait() algorithm,
demonstrating that coroutines can seamlessly integrate where senders are
used.

In this case, process_files() begins execution on the main thread.
After the first co_await, execution continues on the I/O thread. At
the end of the coroutine, execution remains on the I/O thread. The final
sync_wait() then switches the main execution path back to the main
thread.

While writing this, I realized there is a bug in the code. I decided to leave
the bug as is and explain it, as this may be more helpful for the reader. The
issue is that we are destroying the io_pool object when exiting the scope
of the coroutine, but execution may still be ongoing on one of its threads.
Ideally, we should switch back to the main thread before destroying this
pool. Alternatively, we could transfer control to one of the CPU threads, as
the system scheduler guarantees the validity of its threads throughout the
application’s lifetime, including before and after main().

Returning to the topic of coroutines, there is nothing that coroutines can
achieve that cannot also be done with senders, and the reverse is true as
well. However, using senders is generally more efficient. Despite this, I
find coroutines useful in two specific scenarios:

	� Non-linear control flow: When logic involves loops or branches,
expressing these flows using senders can be challenging due to
the lack of standardized algorithms for such patterns. Even if
such algorithms were standardized, expressing everything through
expression composition would likely be more cumbersome than
using traditional control structures.

	� Type erasure: Currently, there is no type-erased sender proposed
for standardization. This means that every sender’s internal structure
must be fully visible at the point of use. In contrast, coroutines
naturally hide implementation details, making them a good choice
for situations requiring type erasure.

At the time of writing, the task type used in this example has not been
proposed for standardization. However, there is broad consensus that it is
worth standardizing.

Takeaways
Following the article in the last Overload [Teodorescu24], which
introduced the senders/receivers framework accepted into the working
draft of the C++26 standard, this article explores several examples.
The goal is to familiarize readers with writing programs using senders/
receivers. Each of the three examples presented here aims to improve
performance by employing multi-threading.

The examples demonstrate that adding multi-threading to applications
does not have to be a daunting task. By thinking in terms of execution
graphs, concurrent solutions can be expressed clearly and intuitively,
avoiding the need for manual synchronization primitives, which are
notoriously error-prone4.

While there are some challenges users may encounter when working with
senders/receivers, they are relatively minor compared to the complexities
of multi-threading with raw threads and locks. One important
consideration is managing the lifetime of objects in relation to the threads
accessing them. This article highlights a bug encountered by the author
during implementation to emphasize this point. In contrast, manual multi-
threading is typically far more difficult, as it requires reasoning about a
larger number of objects, with much of the reasoning being non-local.

Another challenge users might face is handling the completion signals
of senders. Certain transformations may create unexpected completion
signals, forcing the user to address them. Improperly connected senders
can result in long, cryptic compilation errors. In our case, we had to
consolidate two types of error completions into a single type to resolve
these issues.
4 The lack of need for manual synchronization is discussed in

[Teodorescu24]. The main idea is that we prefer structuring concurrency
and explicitly encoding the dependencies between work items.

The examples presented here highlight several key strengths of the
senders/receivers framework:

	� Structuredness. Senders/receivers impose a clear structure on an
application’s concurrency. In well-structured code, concurrency is
nested in such a way that concurrency concerns can be abstracted
away by the enclosing construct (e.g., a function or coroutine). The
framework also supports weakly-structured concurrency, where
scopes do not fully nest but can be organized using dynamic scopes
to encompass all computations. Both approaches are far superior
to the unstructured methods of managing concurrency with raw
threads and locks.

	� Local reasoning. Most concurrency reasoning can be confined to a
local scope. For fully structured code, all reasoning remains local.
In weakly-structured code, while concurrency concerns may extend
eyond the current function, they are still constrained to a defined
dynamic scope.

	� Safety. The reader might have noticed that the discussion about
safety was minimal. This is because, when object lifetimes are
properly managed, the framework inherently avoids safety issues.
It eliminates concerns like data races and deadlocks, which are
common in unstructured multithreading.

	� Performance. The senders/receivers framework can achieve zero
abstraction cost. There are no unnecessary memory allocations,
and no extra synchronization overhead is introduced. This makes
it possible to build highly performant multi-threaded applications.

Together, these strengths make senders/receivers an excellent framework
for writing multi-threaded code. While the syntax might feel less intuitive
and diagnostics may sometimes be trickier, the framework offers a
powerful and reliable way to build robust and efficient multi-threaded
software.

The real question is how well this framework works for you, the reader.
Is it as straightforward as the article suggests, or do you encounter
challenges when applying it to your problems? I would love to hear your
feedback and learn about your experiences using this approach. �

References
[ExamplesCode] Lucian Radu Teodorescu, overload185_sr_examples,

https://github.com/lucteo/overload185_sr_examples.
[OpenCV] OpenCV, OpenCV – Open Computer Vision Library,

https://opencv.org/.
[P2079R5] Lucian Radu Teodorescu, Ruslan Arutyunyan, Lee Howes,

Michael Voss, P2079R5: System execution context, 2024,
https://wg21.link/P2079R5.

[P2300R10] Michał Dominiak, Georgy Evtushenko, Lewis Baker,
Lucian Radu Teodorescu, Lee Howes, Kirk Shoop, Michael
Garland, Eric Niebler, Bryce Adelstein Lelbach, P2300R10:
std::execution, 2024, https://wg21.link/P2300R10.

[P3149R6] Ian Petersen, Jessica Wong, Ján Ondrušek, Kirk Shoop, Lee
Howes, Lucian Radu Teodorescu, async_scope – Creating scopes
for non-sequential concurrency, https://wg21.link/P3149R6.

[stdexec] NVIDIA, Senders – A Standard Model for Asynchronous
Execution in C++, https://github.com/NVIDIA/stdexec.

[Teodorescu24] Lucian Radu Teodorescu, Senders/receivers: An
Introduction, Overload 184, December 2022

[Teodorescu23] Lucian Radu Teodorescu, ‘Concurrency Approaches:
Past, Present, and Future’, ACCU Conference, 2023,
https://www.youtube.com/watch?v=uSG240pJGPM.

[WG21Exec] WG21, ‘Execution control library’ in Working Draft
Programming Languages – C++ https://eel.is/c++draft/#exec.

[Wikipedia] Wikipedia, Resource contention,
https://en.wikipedia.org/wiki/Resource_contention.

https://github.com/lucteo/overload185_sr_examples
https://opencv.org/
https://wg21.link/P2079R5
https://wg21.link/P2300R10
https://wg21.link/P3149R6
https://github.com/NVIDIA/stdexec
https://www.youtube.com/watch?v=uSG240pJGPM
https://eel.is/c++draft/#exec
https://en.wikipedia.org/wiki/Resource_contention

WU YOngWEi FEATURE

February 2025 | Overload | 11

Bit Fields, Byte Order
and Serialization
Network packets can be represented as bit fields. Wu Yongwei
explores some issues to be aware of and offers solutions.

in order to store data most efficiently, the C language has supported bit
fields since its early days. While saving a few bytes of memory isn’t as
critical today, bit fields remain widely used in scenarios like network

packets. Endianness adds complexity to bit field handling – especially
since network packets are typically big-endian, while most modern
architectures are little-endian. This article explores these problems and
their solutions, including my reflection-based serialization project.

Memory layout of bit fields
The memory layout of bit fields is implementation-defined. In a typical
little-endian environment, bit fields start from the lower bits of the lower
byte and extend toward higher bits and bytes. In a typical big-endian
environment, bit fields start from the higher bits of the lower byte and
extend toward lower bits and higher bytes.

Let’s consider a practical scenario. Suppose we want to use a 32-bit
integer to store a date. How should we achieve this? A simple approach
is to store the number of days from a fixed point of time (e.g. 1 January
1900). We can calculate the number of years that can be expressed as
follows:

years � �
2

365 2425
11 759 221

32

.
, ,

 (1)

However, with this approach, extracting specific year, month, and day
information becomes very cumbersome. A simpler way is to store the
year, month, and day as bit fields. We can define the following struct,
using only 32 bits:
 struct Date {
 int year : 23;
 unsigned month : 4;
 unsigned day : 5;
 };

Our intention is to use a 23-bit signed integer for the year (ranging from
-4,194,304 to 4,194,303), a 4-bit unsigned integer for the month (0–15,
covering legal values 1–12), and a 5-bit unsigned integer for the day (0–
31, covering legal values 1–31). This representation is similarly compact,
with a slightly narrower range, but it’s quite sufficient and much more
convenient for many common usages (excepting interval calculation).

If you want to store data in a file or send it over a network, directly
sending in-memory data is potentially problematic. Big-endian and little-
endian environments have different memory layouts for such bit fields.

Little-endian environments store them as follows (the memory layout on
mainstream processors):

bit: 7 6 5 4 3 2 1 0
byte 0 y7 y6 y5 y4 y3 y2 y1 y0

byte 1 y15 y14 y13 y12 y11 y10 y9 y8

byte 2 m0 y22 y21 y20 y19 y18 y17 y16

byte 3 d4 d3 d2 d1 d0 m3 m2 m1

Big-endian environments store them differently (the memory layout
expected by network packets):

bit: 7 6 5 4 3 2 1 0
byte 0 y22 y21 y20 y19 y18 y17 y16 y15

byte 1 y14 y13 y12 y11 y10 y9 y8 y7

byte 2 y6 y5 y4 y3 y2 y1 y0 m3

byte 3 m2 m1 m0 d4 d3 d2 d1 d0

As we can see, these two approaches differ significantly. If we want to
serialize in the big-endian order (which is the standard in the networking
world), we have two possible solutions:

1. When bit fields don’t cross byte boundaries, we can design separate
structs for big-endian and little-endian systems, using conditional
compilation to select the appropriate definition.

2. When bit fields cross byte boundaries, the above approach alone
isn’t sufficient. We need to define different structs (with reversed
bit-field ordering for big-endian versus little-endian) and perform
byte-order conversion during serialization and deserialization
(using functions like htonl).

Examples of the simple approach
Here are some actual definitions from Linux.

A simple case (single byte, only requiring order reversal):
 struct iphdr
 {
 #if __BYTE_ORDER == __LITTLE_ENDIAN
 unsigned int ihl:4;
 unsigned int version:4;
 #elif __BYTE_ORDER == __BIG_ENDIAN
 unsigned int version:4;
 unsigned int ihl:4;
 #else
 # error "Please fix <bits/endian.h>"
 #endif
 // …
 };

Listing 1 (next page) is a more complex case (multiple bytes, but not
crossing byte boundaries).

As we can see, the field ordering here is quite distinctive. This arrangement
ensures these fields have a consistent memory layout on both little-endian
and big-endian systems.

Wu Yongwei Having been a programmer and software architect,
Yongwei is currently a consultant and trainer on modern C++.
He has nearly 30 years’ experience in systems programming and
architecture in C and C++. His focus is on the C++ language, software
architecture, performance tuning, design patterns, and code reuse.
He has a programming page at http://wyw.dcweb.cn/, and he can be
reached at wuyongwei@gmail.com.

WU YOngWEiFEATURE

12 | Overload | February 2025

Example of the ‘standard’ approach
Since its bit fields cross byte boundaries, merely modifying the field
order will not do for our Date struct as shown above. The conventional
approach is to use the code in Listing 2 for serialization.

Under this ‘standard’ approach, bit fields that can be assembled into a
single integer must be placed in a struct, which is then wrapped in a union.
This allows us to directly access the integer for byte-order conversion
later. Of course, we need to determine whether the platform is little-
endian or big-endian to choose the appropriate struct definition.

Since macros for endianness detection aren’t standardized, such code
isn’t truly cross-platform. However, the code above works correctly
on mainstream compilers like GCC, Clang, and MSVC. While GCC
and Clang recognize the special macros __BYTE_ORDER__ and
__ORDER_LITTLE_ENDIAN__, MSVC recognizes neither. Therefore,
MSVC defaults to the first case (#if 0 == 0), which conveniently
matches Windows’ use of little-endian order.

This approach remains cumbersome, requiring manual maintenance of
two code branches and attention to htonl-like function calls – exactly
once for serialization or deserialization, no more and no less! Experience
from real projects shows this method is error-prone, and issues like
missed or duplicate byte-order conversions are common.

It is even worse than that. While this approach is common in C, and
all mainstream C++ compilers continue to allow such code to work,
it is technically undefined behaviour in C++. The orthodox way is to
use bit_cast or memcpy, which would make the code even more
complicated.

Serialization features in mozi
At the 2023 C++ Summit (China), I presented static reflection and
demonstrated the Mozi open source project [mozi] that utilized manual
reflection techniques. Using macros and templates, this project provides
basic reflection functionality in C++17, even though C++ does not yet
support static reflection natively.

This year I found more time to implement serialization and deserialization
for network messaging in Mozi. Now, we only need to define a reflected
struct to enable fully automated serialization and deserialization – users
don’t need to manually write field-specific handling code or perform
byte-order conversions. For example, for a Date struct (without using
bit fields for now), we can serialize and deserialize it as shown in Listing
3 (next page).

struct tcphdr
 {
 __extension__ union
 {
 // …
 struct
 {
 uint16_t source;
 uint16_t dest;
 uint32_t seq;
 uint32_t ack_seq;
if __BYTE_ORDER == __LITTLE_ENDIAN
 uint16_t res1:4;
 uint16_t doff:4;
 uint16_t fin:1;
 uint16_t syn:1;
 uint16_t rst:1;
 uint16_t psh:1;
 uint16_t ack:1;
 uint16_t urg:1;
 uint16_t res2:2;
elif __BYTE_ORDER == __BIG_ENDIAN
 uint16_t doff:4;
 uint16_t res1:4;
 uint16_t res2:2;
 uint16_t urg:1;
 uint16_t ack:1;
 uint16_t psh:1;
 uint16_t rst:1;
 uint16_t syn:1;
 uint16_t fin:1;
else
error "Adjust your <bits/endian.h> defines"
endif
 // …
 };
 };
};

listing 1

#ifdef _WIN32
#include <winsock2.h> // htonl/...
#else
#include <arpa/inet.h> // htonl/...
#endif

struct Date {
 union {
 struct {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
 unsigned day : 5;
 unsigned month : 4;
 int year : 23;
#else
 int year : 23;
 unsigned month : 4;
 unsigned day : 5;
#endif
 };
 unsigned year_month_day;
 };
};

// …
Date date;
// …
date.year_month_day = htonl(date.year_month_day);
// date is ready for transmission

listing 2

for targets with known lengths, we should
be able to avoid heap memory allocation
entirely

WU YOngWEi FEATURE

February 2025 | Overload | 13

This program will output the following result:
 {
 year: 2024,
 month: 8,
 day: 19
 }
 { 7, 232, 8, 19 }

Here are some important details:

	� Reflected structs don’t provide comparison operations by default
to avoid unnecessary ‘unused function’ warnings. However,
you can easily enable comparison operations using macros like
DECLARE_COMPARISON or DECLARE_EQUAL_COMPARISON.
These operations perform member-wise comparisons.

	� As a reflected object, date can be output directly to cout using
mozi::print/println. Due to special handling in the code,
uint8_t (i.e. unsigned char) is output as an integer rather than
as a character, as is the usual case when using <<.

	� The code uses the serialization result as input for deserialization,
where input is a span of bytes. When deserialization completes
successfully, the following conditions should be met:

	� ec indicates success

	� input` is empty (indicating all input has been consumed)

	� date2 equals date

I would like to mention that the implementation doesn’t use non-standard
functions like htons. Instead, it uses handwritten platform-independent
function templates. These templates are friendly for compile-time
programming, and they can be translated into optimal assembly
instructions during serialization (under GCC and Clang compilers at
least), or even eliminated entirely on big-endian systems. You can check
the results in the following link: https://godbolt.org/z/f1Gn8Mcx1

(The deserialization logic is similar, but the compiler wasn’t able to
generate similarly highly-optimized code, possibly due to alignment.)

The serialization target type
For flexibility and safety, the serialization target is a vector. However,
for targets with known lengths, we should be able to avoid heap
memory allocation entirely. Therefore, in environments that support
polymorphic allocators, the default serialization target type is set to
std::pmr::vector<std::byte> (which can be overridden by
setting the macro MOZI_SERIALIZATION_USES_PMR to 0 or 1). Using
allocators provided by C++17, we can avoid the heap allocations easily
in such circumstances. Here’s an example:
 std::byte buffer[50];
 std::pmr::monotonic_buffer_resource
 res(buffer, sizeof buffer);
 std::pmr::polymorphic_allocator<std::byte>
 a(&res);
 mozi::serialize_t result(a);
 result.reserve(50);
 // Heap memory will now be allocated only
 // if the size exceeds 50 bytes
 mozi::net_pack::serialize(date, result);
 // Use result as you like in current scope

The bit_field type
Reflected structs don’t directly support bit fields; but they don’t have to.
Instead, we can define a special class template bit_field that represents
bit fields and automatically converts objects to the appropriate memory
layout during serialization.

Objects of this type use the most compact integer type (uint8_t,
uint16_t, or uint32_t) to store their data. The type supports
construction and assignment from integers, as well as on-demand conversion
to appropriate integer types. Using objects of this type feels similar to using
regular integers, but like bit fields, the data is limited to a specified number
of bits, with values being truncated if they exceed this limit.

Here’s an example demonstrating its basic usage:
 bit_field<4> f{13}; // Construct from integer
 cout << f << '\n'; // 13 (automatically
 // converts to unsigned)
 f = 17; // Can be assigned to
 << f << '\n'; // 1 (due to truncation)

The previous example showed the most common case – an unsigned
bit_field. Since bit fields can also be signed (like our earlier year bit
field), bit_field uses a second template parameter to specify whether
it is signed (unsigned by default). Using SFINAE, I’ve constrained
unsigned bit_fields to be convertible with unsigned, while signed
bit_fields are convertible with (signed) int.

Here’s some code demonstrating the subtle differences between signed
and unsigned bit_fields:
 bit_field<4> f1{13};
 cout << f1 << '\n'; // 13
 bit_field<4, bit_field_signed> f2{13};
 << f2 << '\n'; // -3 (due to truncation)
 f1 = -1; // Triggers warning with
 // -Wsign-conversion
 cout << f1 << '\n'; // 15
 f2 = -1; // OK
 cout << f2 << '\n'; // -1

Bit-field containers
Just as we needed to encapsulate bit fields in a struct for byte-order
conversion earlier, we need to explicitly place multiple bit fields into a bit-
field container to enable proper byte-order conversion. The serialization
process explicitly checks that the total number of bits is 8, 16, or 32 –
otherwise, we get a compilation error.

In practice, we can simply change the Date definition to:
 DEFINE_BIT_FIELDS_CONTAINER(
 Date,
 (bit_field<23, bit_field_signed>)year,
 (bit_field<4>)month,
 (bit_field<5>)day
);

#include <assert.h>
#include <stdint.h>
#include <mozi/bit_fields.hpp>
#include <mozi/net_pack.hpp>
#include <mozi/print.hpp>
#include <mozi/serialization.hpp>
#include <mozi/struct_reflection.hpp>

DEFINE_STRUCT(
 Date,
 (int16_t)year,
 (uint8_t)month,
 (uint8_t)day
);

DECLARE_EQUAL_COMPARISON(Date);

int main()
{
 Date date{2024, 8, 19};
 mozi::println(date);

 mozi::serialize_t result;
 mozi::net_pack::serialize(date, result);
 mozi::println(result);

 mozi::deserialize_t input{result};
 Date date2{};
 auto ec =
 mozi::net_pack::deserialize(date2, input);
 assert(ec ==
 mozi::deserialize_result::success);
 assert(input.empty());
 assert(date == date2);
}

listing 3

https://godbolt.org/z/f1Gn8Mcx1

WU YOngWEiFEATURE

14 | Overload | February 2025

We do not need to change anything else in the code, and it will produce
new output:
 {
 year: 2024,
 month: 8,
 day: 19
 }
 { 0, 15, 209, 19 }

Listing 4 is the complete working code for experimentation and reference.

If we change ‘23’ to ‘22’, we get a compilation error immediately (see
Figure 1).

In other words, if padding is needed, my current approach requires
explicitly writing out the padding rather than letting the compiler handle
it automatically. I believe this approach better ensures serialization
consistency.

It might be worth noting that, unlike the built-in bit fields (especially
those on big-endian architectures), the in-memory layout of Date is
now different from the serialization result. The serialization result is like
the true (big-endian) bit fields, but in memory year, month, and day
are represented as integral values, which can be accessed faster than bit
fields. So we get the benefits of simplicity and performance, at the cost of
a few more bytes of memory use.

nested struct handling
The processing of reflected structs, whether for output or serialization,
is recursive. For objects without variable-length data (which lacks
an intuitive/direct handling method and isn’t supported in the current
net_pack scheme), we can now simply nest and use them. For example:
 DEFINE_STRUCT(
 Data,
 (std::array<char, 8>)name,
 (uint16_t)age,
 (Date)last_update
);
 // …
 Data data{{"John"}, 17, {2024, 8, 19}};
 mozi::println(data);
 mozi::serialize_t result;
 mozi::net_pack::serialize(data, result);
 mozi::println(result);

Here’s the output we get (using -DMOZI_PRINT_USE_FMTLIB flag for
prettier formatting with the {fmt} library [fmt]):
 {
 name: { 'J', 'o', 'h', 'n', '\x00', '\x00',
 '\x00', '\x00' },
 age: 17,
 last_update: {
 year: 2024,
 month: 8,
 day: 19
 }
 }
 { 74, 111, 104, 110, 0, 0, 0, 0, 0, 17, 0, 15,
 209, 19 }

Quite convenient, isn’t it?

Extensible serialization schemes
The net_pack serialization demonstrated above is stateless and simple,
suitable for basic network messaging scenarios. Mozi supports more
sophisticated serialization schemes, including:

	� Extending existing serialization schemes via explicit specialization
to support your custom data types

	� Creating new serialization schemes that can work alongside existing
ones (next scheme in list is used only when previous ones don’t
support a type)

	� Using state data during serialization/deserialization to track counts,
nesting levels, and suchlike

For more details on these advanced features, please refer to the test code
in the Mozi project.

I hope you find my work and approach useful, and can apply them in your
software projects. If you find any issues in the Mozi project, please don’t
hesitate to report them. And patches are even more welcome! �

References
[fmt] https://github.com/fmtlib/fmt
[mozi] https://github.com/adah1972/mozi

#include <assert.h>
#include <mozi/bit_fields.hpp>
#include <mozi/net_pack.hpp>
#include <mozi/print.hpp>
#include <mozi/serialization.hpp>
#include <mozi/struct_reflection.hpp>

using mozi::bit_field;
using mozi::bit_field_signed;

DEFINE_BIT_FIELDS_CONTAINER(
 Date,
 (bit_field<23, bit_field_signed>)year,
 (bit_field<4>)month,
 (bit_field<5>)day
);

DECLARE_EQUAL_COMPARISON(Date);

int main()
{
 Date date{2024, 8, 19};
 mozi::println(date);

 mozi::serialize_t result;
 mozi::net_pack::serialize(date, result);
 mozi::println(result);

 mozi::deserialize_t input{result};
 Date date2{};
 auto ec =
 mozi::net_pack::deserialize(date2, input);
 assert(ec ==
 mozi::deserialize_result::success);
 assert(input.empty());
 assert(date == date2);
}

listing 4

…
…/mozi/net_pack_bit_fields.hpp:41:5: fatal error: static_assert failed due to requirement 'size_bits ==
8 || size_bits == 16 || size_bits == 32' "A bit-fields container must have 8, 16, or 32 bits"
 static_assert(size_bits == 8 || size_bits == 16 || size_bits == 32,
 ^ ~~
…

Figure 1

https://github.com/fmtlib/fmt
https://github.com/adah1972/mozi

PAUl FlOYD FEATURE

February 2025 | Overload | 15

Valgrind’s Dynamic Heap
Analysis Tool: DHAT
Valgrind experimental tool DHAT is now official. Paul Floyd explains
what this heap analysis tool is and how to use it.

Background
Is it really over 10 years since I last wrote an article on Valgrind? It is
indeed [Floyd13]. Back then I wrote about the tools that make up the
standard Valgrind toolkit. Since then, one of the experimental tools has
been removed (exp-sgcheck, ‘experimental statics and globals check’,
removed mainly because of excessive false positives). Another of the
tools, exp-dhat has been promoted from the experimental category to
being a first-class component. DHAT is the subject of this article. One
other thing that’s happened in that period is that I’ve joined the rather
informal team of Valgrind developers [Valgrind]. This means that I’ve
progressed from believing that I know roughly how Valgrind works to
being able to work on some bits and knowing that I don’t understand
most of it.

About DHAT
DHAT is a tool that can give you insights into heap memory use that
will allow you to make changes that will make your memory use more
efficient.

Since DHAT is part of Valgrind it will only work on Linux, FreeBSD,
Solaris (probably) and macOS (old versions only). I don’t know of any
equivalent tool for Windows.

DHAT underwent a major reworking in Valgrind 3.15 (April 2019). In
this change

	� The ‘experimental’ status was removed, and the tool name changed
from exp-dhat to just dhat.

	� The command line options were simplified.

	� The tool output changed from the console to a file.

	� A web interface was added to view the results file and to allow
sorting on different criteria.

If you are using Valgrind 3.14 or earlier, you should be able to follow
this article, but you should expect your output to be different. You will
probably want to set the --show-top-n to a value higher than the
default (for instance, --show-top-n=500).

What is DHAT, exactly? It is a data profiler (the acronym stands for
Dynamic Heap Analysis Tool) [DHAT]. I expect most readers are familiar
with code profiling tools [Wikipedia] (like Callgrind, VTune, Quantify,
Linux perf and others). As the Heap Analysis part of the name implies,
DHAT performs profiling of memory accesses to blocks of heap memory.

DHAT doesn’t perform profiling of the amount of heap allocation (like
Massif [Massif, Floyd12], another Valgrind tool, Flame Graphs [Gregg]
generated with bcc or heaptrack [Github1]). For every heap allocated
block, DHAT will count every read and write within that block. For larger
blocks of memory of over 1024 bytes, it will just aggregate accesses to
the blocks. For smaller blocks of 1024 bytes and less, it will also generate
a map of access counts within the block. I don’t know of any tool that
produces a whole-memory heat map, probably because that would have
an excessive memory and run time overhead.

DHAT is somewhat difficult to use and works best for structures that get
allocated individually on the heap. Having said that, I find it very useful,
and I’m not aware of any other tools that perform the same task. There
is one non-tool alternative: manual code instrumentation. The problems
with manual instrumentation are:

1. You don’t necessarily know in advance which structures to
instrument.

2. If you want to instrument every member of your structures, that will
entail a lot of code.

Using DHAT
DHAT is quite simple to use.

1. Build your executable, preferably with debug information (adding
-g to the build when using GCC or LLVM toolchains).

2. Run your executable with DHAT:
valgrind –tool=dhat {your exe name}

At the end of the run DHAT will print a summary of the run and
instructions as to how to view the results. It will also have generated
a results file dhat.out.PID where PID will be the number of the
process ID when DHAT was running. The results file isn’t meant to
be human readable.

3. Load the results following the instructions from step 2.

Be aware that DHAT, like all of the Valgrind tools, is very slow. I
recommend that you only use it with scenarios that run in no more than a
few minutes outside of Valgrind.

Example
Let’s look at a small example, starting with a data structure (Listing 1,
next page). I’m assuming 64bit desktop-style applications throughout the
examples. The source code and an example of the results along with the
DHAT viewer files can be found on GitHub [Floyd]. You can view the
results on any platform with a web browser.

I have deliberately not initialized f2 in the constructor. I have also
deliberately initialized f3 with a short string that will fit in libc++ ‘short
string optimization’ (SSO). This means that allocating an instance of
TestClass only needs one call to operator new. Normally when
using DHAT you work backwards from the results to the source code
and data structures. I’ll do that the other way round, working forwards
from the code to the results, for explanatory reasons. What is the size of
TestClass? That depends a bit. The structure has 8-byte alignment. So,
the total size is:
 sizeof(int) + 4 hole + sizeof(double) +
 sizeof(std:string)

Paul Floyd has been writing software, mostly in C++ and C, for
about 30 years. He lives near Grenoble, on the edge of the French
Alps and works for Siemens EDA developing tools for analogue
electronic circuit simulation. In his spare time, he maintains Valgrind.
He can be contacted at pjfloyd@wanadoo.fr

PAUl FlOYDFEATURE

16 | Overload | February 2025

The size of std::string depends on the platform. With clang++/libc++
it is 24. With g++/libstdc++ it is 32. Since I’m using FreeBSD amd64 and
aarch64, the size that I see is 24, and the size of TestClass is 40. You can

check your data structure layouts
using a tool called pahole (part of
the dwarves package [Github2]).
To use pahole you need a binary
with debug information. The
tool reads the DWARF debug
info from the binary and prints a
summary of the layouts of all data
structures that it finds, including a
summary of any wasted space and
which blocks of members fit in a
cacheline. Figure 1 is the output
for TestClass.

The comments at the end of the
lines with data members have
two numbers. The first is the
cumulative size so far and the
second is the size of the member

on that line. pahole is a great tool and I strongly recommend its use in
conjunction with DHAT.

The second part of the example code is in Listing 2.

This doesn’t do much. It prints out a couple of sizes to confirm what
we saw with pahole. It adds 1000 default instances of TestClass to a
std::list. It then iterates over the list reading and summing the f1
member. Finally, it outputs the sum, which will be 0 since f1 gets default
value initialized.

Running the example
The output that I get is in Figure 2.

class TestClass {
 int f1; /* 0 4 */

 /* XXX 4 bytes hole, try to pack */

 double f2; /* 8 8 */
 string f3; /* 16 24 */
public:
 void TestClass(class TestClass *);
 int getF1(const class TestClass *);
 void ~TestClass(class TestClass *);
 /* size: 40, cachelines: 1, members: 3 */
 /* sum members: 36, holes: 1, sum holes: 4 */
 /* last cacheline: 40 bytes */
};

Figure 1

int main()
{
 std::list<TestClass> tc;

 std::cout << "Size of TestClass "
 << sizeof(TestClass) << '\n';
 std::cout << "Size of std::string "
 << sizeof(std::string) << '\n';
 for (int i = 0; i < 1000; ++i)
 {
 tc.emplace_back();
 }
 int s{};
 for (auto const& elem : tc)
 {
 s += elem.getF1();
 }
 std::cout << "s " << s << '\n';
}

listing 2

$ valgrind --tool=dhat ./main
==1148== DHAT, a dynamic heap analysis tool
==1148== Copyright (C) 2010-2024, and GNU GPL'd, by Mozilla Foundation et al.
==1148== Using Valgrind-3.25.0.GIT and LibVEX; rerun with -h for copyright info
==1148== Command: ./main
==1148==
Size of TestClass 40
Size of std::string 24
s 0
==1148==
==1148== Total: 60,096 bytes in 1,001 blocks
==1148== At t-gmax: 60,096 bytes in 1,001 blocks
==1148== At t-end: 4,096 bytes in 1 blocks
==1148== Reads: 29,080 bytes
==1148== Writes: 58,040 bytes
==1148==
==1148== To view the resulting profile, open
==1148== file:///home/paulf/tools/valgrind/libexec/valgrind/dh_view.html
==1148== in a web browser, click on "Load...", and then select the file
==1148== /home/paulf/scratch/accu/accu_dhat/dhat.out.1148
==1148== The text at the bottom explains the abbreviations used in the output.

Figure 2

#include <string>
#include <list>
#include <iostream>
class TestClass
{
 int f1;
 double f2;
 std::string f3;
public:
 TestClass() : f1{}, f3{"small string"} {}
 int getF1() const { return f1; }
};

listing 1

pahole is a great tool and i strongly
recommend its use in conjunction with
DHAT.

PAUl FlOYD FEATURE

February 2025 | Overload | 17

Lines that start with ==1148== are the console output from DHAT.
The other lines are from the ‘main’ test executable. We can see most of
what is happening from the summary. The Total is the total amount
of memory allocated and the number of allocated blocks. I’ll skip a line
to t-end. DHAT uses its own terminology that can take some getting
used to. t-end is at program end, and at that point there is one block of
4096 bytes. That block is allocated by libc by fwrite during the call to
std::cout and FreeBSD libc does not free it.

Getting back to the Total, if fwrite uses 4096 bytes in 1 block that
leaves 56000 bytes in 1000 blocks for main(). That is exactly what I
was expecting. 1000 elements get added to the list, so each element is
56 bytes. We’ve already seen that TextClass is 40 bytes. The other 16
bytes are used by the next and previous pointers of the std::list
nodes. t-gmax is the value at the global maximum, and it happens to
be the same as the Total. Finally, there are the totals of the numbers of
bytes read and written. The number of bytes written are roughly the same
as the number of bytes allocated, which makes sense. I’m not sure where
all the bytes are being read. I expect that the list traversal to calculate them
s reads the list next (8 bytes) and f1 (4 bytes) and the list destructor also
does another traversal. That’s 20 bytes. I guess that there is a 1 byte read
per element to work out if the f3 string needs to be deleted or not. There
must be one more 8-byte read per element somewhere, giving a total of
29 per TestClass instance.

Viewing the results
I followed the instructions and opened the link in Firefox.

Note the Legend. I’ll cover the Sort
metric drop-down later.

Clicking Load… and opening a results
file gives a complex screen even for
this small example, so I’ll break it up
into small pieces.

Off to an easy start. That’s just a summary of the executable and the PID
that ran.

This is still quite simple. Times are really instruction counts, and this tells
us when the peak memory occurs, and the total number of instructions
executed.

Now for the hard bit. Before I treat you to some pretty colours1, I need to
make a stab at explaining what DHAT is doing. Basically, it is just doing
two things.

1. Recording heap allocations (address, length, callstack). I’ll call
these allocation contexts.

2. Counting accesses to the heap allocations.

DHAT calls these allocation contexts ‘Program Points’ (PPs). The PPs
get organized as a tree. The root of the tree represents the entire execution
of the executable. Each PP is colour coded with darker colours meaning
more blocks or memory. There is a threshold of 1% below which PPs do
not get displayed.

Below the root there are three kinds of PP nodes:

1. The root node, coloured like the interior nodes.

2. Interior nodes. These are for allocation contexts that also contain
other allocation contexts. They are coloured yellow if their child
nodes are collapsed and blue of their child nodes are expanded.

3. Leaf nodes for functions that allocate by do not call any other
allocating functions. They are colour coded green.

In the example that I’m using there is only a root node and a leaf node.

The following few pictures are of the root node. Before taking the
pictures, I collapsed the children, making this yellow. Unfortunately, the
viewer does not allow line wrapping.

This looks quite like what we saw in the summary on the console, with
some extra information.

1 If you access the online version of this article, all the screenshots are in
colour.

The number of bytes written are roughly
the same as the number of bytes

allocated, which makes sense. i’m not
sure where all the bytes are being read.

PAUl FlOYDFEATURE

18 | Overload | February 2025

Section Data meaning
Total Bytes

10,899.38/
Minstr

This is how many bytes get allocated per
million instructions. Lower is better

Total Blocks
181.55/
Minstr

This is the number of memory blocks allocated
per million instructions. Lower is better.

Total avg size
60.04
bytes

The average size per allocation.

Total avg lifetime
621,256.21
instrs

This is the average number of instructions per
block between allocation and deallocation.
Lower is better, also shown as a %.

Reads 5,274.13/
Minstr

The average number of reads per million
instructions. Higher is better. Very low or zero
indicates a problem.

Reads 0.48/byte The average number of reads per byte
allocated.

Writes 10,526.49/
Minstr

The average number of writes per million
instructions. Higher is better. Very low or zero
indicates a problem. A value of one may mean
objects are getting constructed and initialized
and having no subsequent writes.

Writes 0.97/byte The average number of writes per byte
allocated.

Not so bad? On with an interior node.

This is quite similar to the root PP node for most of the information.
In order for the text to fit the Total line has been truncated as have
the standard library function names in the Allocated at section. The
Total line is similar to the previous PP. There are a few extras.

The Max line, showing the maximum memory for that leaf PP.

A summary of Accesses. This is the sum of all accesses for all allocations
done at that callstack. This does not distinguish between reads and writes.
This displays 32 bytes on a line with the access count for each byte. Ditto
marks mean that the count is the same as the previous byte. A dash means

a count of zero. The first 8 bytes have a count of 3002, probably the list
previous pointer. The next 8 bytes were accessed 5001 times, probably
the list next pointer. Then there are 4 bytes with an access count of 2000
– that’s the f1 member, each is zero initialized and read once in the sum
loop. After that there are 12 bytes without any accesses. 4 of those bytes
are the hole in the structure and 8 are for double f2 that I deliberately
did not initialize. The second line is the std::string f3. I guess that
the first byte is being used as a tag to indicate SSO use with an access
count of 2000. Then there are 13 bytes with an access count of 1000
corresponding to "small string\0". Lastly there are 10 bytes with
an access count of 0, the unused bytes in the SSO std::string. There
isn’t much that can be done in that case. Note that the histogram or access
map is only produced for allocations of 1024 bytes and less. This means
that you won’t see these maps for any large array-type allocations (like
std::vector).

The third thing is that there is the callstack that tells you where the
allocations of this kind were done.

Sorting
Now I’ll get back to the Sort metric dropdown list. This allows you
to change how the display is ordered and filtered. Using this you can
concentrate on specific things like peak memory, small allocations, high
and low access rates.

larger ‘access’ maps
If you see a block of memory that is too big for the 1024-byte access map
limit, but you would still like to look ‘inside’ it to see how it is being used
there is way. You will need to instrument the code to enable this.

the histogram or access map is only
produced for allocations of 1024 bytes and
less. This means that you won’t see these
maps for any large array-type allocations

PAUl FlOYD FEATURE

February 2025 | Overload | 19

The first thing that you need to do is to include valgrind/dhat.h.

Secondly you need to use the DHAT_HISTOGRAM_MEMORY Valgrind
client request macro, for instance:
 std::vector<uint8_t> vec(2000, 0);
 DHAT_HISTOGRAM_MEMORY(vec.data());

The macro just takes the address of the allocated block. In the example
above, the limit has been raised to 2000. There is still a hard coded limit
of 25600 on these user-specified access maps (25× the normal default).

This is still fairly limited for general use with C++ containers. For
instance, if you have an std::vector that is not allocated up-front like
in the example above then it’s tricky to know when the allocated memory
needs to grow and the new allocation flagged for profiling. You could
track the vector capacity(). Or you could write a custom allocator –
please contact me if you do!

Using the results
To round off this article, here are some ways that you can use DHAT.

1. Identify small, short-lived allocations and convert them to using the
stack.

2. Identify ‘dead data’ (like dead code). These are data fields and entire
structures that are never used. You may need to run several tests to
get better ‘data coverage’ (like code coverage).

3. Improving cache hit rate. Look for high access counts with similar
values in the access map that are more than 2 text lines in the report
apart (corresponding to 64 bytes or 1 cacheline). Use pahole as a
check, and tools like Linux perf stat and perf record to verify any
performance changes.

4. Reduce the peak memory. Look for large allocations that have a long
lifetime and see if that memory can be freed earlier. The kind of
change that you will be looking to make is to patterns that look like

alloc A; use A; alloc B; use B; free A; free B;
where A is no longer needed after ‘use A’. This can be transformed
into

alloc A; use A; free A; alloc B; use B; free B;

Don’t forget that the ‘free’ might be due to the implicit destructor of a
standard library container stored in an automatic variable. That means
that ‘free A;’ may mean that you need to take explicit actions like
A.clear(); A.shrink_to_fit(); and ‘free B’ may just be the end
of the scope.

Conclusion
In my opinion DHAT is a little-known hidden gem amongst the Valgrind
tools. It is very slow, and the results can be difficult to read. There are no
alternatives that I am aware of (other than instrumenting your own code
to do the same sort of things). �

References
[DHAT] DHAT: https://valgrind.org/docs/manual/dh-manual.html
[Floyd] Paul Floyd, DHAT viewer files (repo: paulfloyd/accu_dhat)

https://github.com/paulfloyd/accu_dhat
[Floyd12] Paul Floyd, ‘Valgrind Part 5 – Massif’ in Overload

112, December 2012, available at https://accu.org/journals/
overload/20/112/floyd_1884/

[Floyd13] Paul Floyd, ‘Valgrind Part 6 – Helgrind and DRD’ in
Overload 114, April 2013, available at https://accu.org/journals/
overload/21/114/floyd_1867/

[Github1] Heaptrack: https://github.com/KDE/heaptrack
[Github2] Dwarves: https://github.com/acmel/dwarves
[Gregg] Brendan Greg, ‘Memory Leak (and Growth) Flame

Graphs’, available at https://brendangregg.com/FlameGraphs/
memoryflamegraphs.html#Linux

 [Massif] Valgrind user manual: https://valgrind.org/docs/manual/ms-
manual.html

[Valgrind] Valgrind developers: https://valgrind.org/info/developers.html
[Wikipedia] List of performance analysis tools: https://en.wikipedia.org/

wiki/List_of_performance_analysis_tools#C_and_C++

And this year’s winners are…
in Overload:
1st place:
 C++ Safety, In Context
 by Herb Sutter

2nd place:
 C++20 Concepts Applied – Safe
 Bitmasks Using Scoped Enums
 by Andreas Fertig

3rd place:
 User-Defined Formatting in
 std::format – Part 3
 by Spencer Collyer

in CVu
1st place:
 Private but not Hidden
 by Pete Cordell

2nd place:
 Array Thinking
 by Francis Glassborow

3rd place:
 Eleven C++11 Features Worth
 Knowing About
 by Silas S. Brown

Thank you to everyone who took the time to vote, and to those who wrote the articles. Unfortunately,
we can’t offer a prize – just the mention here.

A number of other writers got a vote, so if you wrote something for us, someone probably thoroughly
enjoyed what you had to say.

If you’re reading this online, the article titles link to the articles. Overload articles are publicly
available, but you must be a member (and logged in) to access the CVu ones. If you’re not a member
yet, why not join?

https://valgrind.org/docs/manual/dh-manual.html
https://github.com/paulfloyd/accu_dhat
https://accu.org/journals/overload/20/112/floyd_1884/
https://accu.org/journals/overload/20/112/floyd_1884/
https://accu.org/journals/overload/21/114/floyd_1867/
https://accu.org/journals/overload/21/114/floyd_1867/
https://github.com/KDE/heaptrack
https://github.com/acmel/dwarves
https://brendangregg.com/FlameGraphs/memoryflamegraphs.html#Linux
https://brendangregg.com/FlameGraphs/memoryflamegraphs.html#Linux
https://valgrind.org/docs/manual/ms-manual.html
https://valgrind.org/docs/manual/ms-manual.html
https://valgrind.org/info/developers.html
https://en.wikipedia.org/wiki/List_of_performance_analysis_tools#C_and_C++
https://en.wikipedia.org/wiki/List_of_performance_analysis_tools#C_and_C++
https://accu.org/journals/overload/32/180/sutter/
https://accu.org/journals/overload/32/179/fertig/
https://accu.org/journals/overload/32/179/fertig/
https://accu.org/journals/overload/32/182/collyer/
https://accu.org/journals/overload/32/182/collyer/
https://accu.org/journals/cvu/36/5/cordell/
https://accu.org/journals/cvu/36/2/glassborow-1/
https://accu.org/journals/cvu/36/5/brown/
https://accu.org/journals/cvu/36/5/brown/

CHRiS OlDWOODFEATURE

20 | Overload | February 2025

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros.
These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He also commentates
on the Godmanchester duck race and is easily distracted by emails and DMs to gort@cix.co.uk and @chrisoldwood

Afterwood
Learning can be a lonely experience. Chris Oldwood
tells us why he prefers learning in person.

i don’t know if it was a New Year’s resolution to resurrect the ACCU
Cambridge meet-up, but 2025 will start with exactly that happening,
as organiser Phil Nash kicks off the reboot with his own talk about the

past, present, and future state of C++. Now that I’m working remotely
practically full-time, having an ACCU meet-up in my neck of the woods
is most welcome. A lawyer might argue that the pre-reboot social at a pub
in Cambridge just before Christmas was the real reboot event, but January
sees the actual return of the traditional format – a talk, book-ended with
some socialising/networking.

The ACCU Cambridge meet-up holds a special place in my heart as it was
the first meet-up I ever attended. Way back in late 2007 (not long after
I joined ACCU) Jez Higgins gave an amusingly titled talk, ‘Iteration:
It’s just one damn thing after another’. Up until that point, my only real
sources of learning about the craft of programming were books, dedicated
printed magazines such as Dr Dobbs, C++ Report, MSJ, etc. and –
increasingly – articles on the Internet, such as the Artima Weblogs (sic).

Whichever way you look at it, it was all about the written word – a very
solitary and passive experience. Sure, I talked with colleagues in the
office, and we shared views on the best written content we came across,
though primarily when it had practical implications for the kinds of
systems we were building. When you’re young and all working for the
same company for a long time, it can create a form of echo chamber.
Unless fresh blood joins the ranks and brings in experiences from farther
afield – other cultures and industries – there is a danger of groupthink
setting in, which is neither optimal for the employer or employee.

It would be easy to go along to the meet-up, listen to the presentation,
and then leave; all without saying a word to anyone else. But then this
would be no different to reading the transcript or watching the video
later (not that that was really even an option back then). What I found
most enjoyable from that meet-up experience was the interactivity, both
with the speaker and the other attendees. Being Cambridge, there were a
number of people from the embedded arena, a sector with very different
constraints to those I’d personally experienced in a professional capacity.
(Writing assembly language in your bedroom as a teenager might give
you some technical empathy but does not prepare you for the commercial
pressures of real-world software development.)

One consequence of that experience, and those meet-ups which followed,
was that I attended my first ACCU Conference the following year in
2008. This was almost like back-to-back meet-ups, but where you also
shared breakfast, lunch, and dinner with the other attendees too. I didn’t
write a review of my 2008 conference experience, mostly because I
wasn’t into writing back then (in fact, I abhorred it). However, Steve
Love (amongst others), clearly helped me overcome my shyness a year
later and I concluded my 2009 ACCU Conference review for CVu with “I
know it’s only my second year, but it lost none of the magic I experienced
last year.” Words to that effect appear to be my closing remark on my five
subsequent ACCU conference reviews for CVu too.

Over 15 years later and I still find attending meet-ups and conferences a
hugely enjoyable part of my learning process, whether hosted by ACCU
or otherwise. Conferences in particular have provided a level of diversity
of content that I might not have been exposed to if each session had
been a separate article, book, or meet-up to attend. A conference allows
you to leverage the locality of reference and amortise the cost of each
session across the whole event, making it cheaper to step outside your
comfort zone and attend talks which may not directly influence your
current role, but could well contribute to your overall well-roundedness
as a programmer. On some occasions an over-subscribed talk forced me
to seek refuge elsewhere and I have subsequently been enlightened by
a topic I didn’t even know existed. I’ve never written a line of Scala,
Clojure, Ruby, Lisp, or Haskell in my life, either professionally or for
fun, but spending 45 to 90 minutes watching a talk on them moved
those subjects (and related concepts) from the level of ‘unconscious
incompetence’ to ‘conscious incompetence’.

Naturally, The Four Stages of Competence is a learning model I first heard
about through a meet-up, and the meta subject of ‘learning about learning’
usually makes one or two appearances at the meet-ups and conferences
that cover a wider spectrum of programming topics than at ones focusing
on a single technology. While I remember soaking up everything I could
about C++ during those first few ACCU conferences (because it was my
bread-and-butter) I purposefully attended talks about testing, databases,
system’s thinking, requirements analysis, architecture, etc. to help add
colour to the craft that I knew I’d probably have to embrace anyway at
some point in my career, even if I wanted to remain a hands-on software
developer. (Conference keynotes can fill this void to some extent too,
when used effectively, but it’s becoming more common for them to
remain technical, which I believe is a lost opportunity.)

For most of us, collaboration plays a significant role in our daily lives,
and being able to communicate ideas well to a variety of stakeholders,
whether they be customers, management, operations, testers, fellow
developers, etc. makes us more productive if we can anticipate
their problems ahead of time – to some degree – because we have an
appreciation for their discipline too. Socialising with other people in a
dedicated learning environment allows you to explore that without the
pressure of the business setting biasing the conversation.

Even if you do choose to stick with what you know best and only attend
events for your technology stack of choice, you’ll still be greeted with an
endless supply of interactive programming war stories to prepare you for
the future, ones that you’d rarely get from reading incident post mortems
or The Daily WTF. Plus, meeting some of your favourite authors and
contributors can do wonders for confronting your Imposter Syndrome
as you realise they’re all mere mortals and don’t, in fact,
know everything there is to know about everything. �

Professional development
World-class conference

Individual membership
Corporate membership

Printed journals
Email discussion groups

Visit accu.org
for details

accu
Professionalism in Programming

1–4 AprilConference

31 MarchPre-conference workshops

29 & 30 March, 12 AprilOnline workshops

accu
2025

REGISTRATION NOW OPEN! Visit https://accuconference.org/

	Editorial: All the Information is on the Task
	Using Senders/Receivers
	Bit Fields, Byte Order and Serialization
	Valgrind’s Dynamic Heap Analysis Tool: DHAT
	Afterwood

